
8/27/2022

1

DATA STRUCTURE USING C

(KCS 301)

By:

Dr. Sunil Kumar

Professor, CSE Dept.

MIET, Meerut

Data Structure Using C (KCS301)

Dr. Sunil Kumar, CSE Dept., MIET Meerut2

� UNIT 1:

� Part 1: Introduction

� Part 2: Arrays

� Part 3: Linked List

� UNIT 2:

� Part 1: Stacks

� Part 2: Queues

� UNIT 3:

� Part 1: Searching

� Part 2: Sorting

� UNIT 4: Graphs

� UNIT 5: Trees

8/27/2022

2

Course Outcomes

Dr. Sunil Kumar, CSE Dept., MIET Meerut3

After studying this course, students will be able to:
� Acquire knowledge of:

� Various types of data structures, operations and algorithms.
� Sorting and searching operations

� Analyse the performance of
� Stack, Queue, Linked Lists,Trees, Graphs
� Searching and Sorting techniques

� Implement all the applications of Data structures in a high-
level language

� Design and apply appropriate data structures for solving
computing problems.

Books

Dr. Sunil Kumar, CSE Dept., MIET Meerut4

Text Book:

� Seymour Lipschutz, “Data Structures” Schaum’s Outline
Series, Tata McGraw-hill Education (India) Pvt. Ltd.

Reference Books:

� A.K. Sharma, “Data Structure Using C”, Pearson Education
India.

� Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J.
Augenstein, “Data Structures Using C and C++”, PHI
Learning Private Limited, Delhi India

� Horowitz and Sahani, “Fundamentals of Data Structures”,
Galgotia Publications Pvt Ltd Delhi India.

� Thareja, “Data Structure Using C” Oxford Higher Education.

8/27/2022

3

Classification of Data Structures

5 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Primitive and Non-Primitive Data Types

� PRIMITIVE DATATYPES: The primitive data types are the basic data types
that are available in most of the programming languages. The primitive data
types are used to represent single values. The primitive data types are:
� Integer

� Float

� Double

� Character

� String

� Boolean etc

� NON-PRIMITIVE DATATYPES: The data types that are derived from
primary data types are known as non-Primitive data types. These data types are
used to store group of values. The non-primitive data types are:
� Arrays

� Structure

� Union

� Linked list

� Stacks

� Queue etc

6 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/27/2022

4

Types of Data Structure

� Based on the organizing method of data structure, data structures are divided into
two types.

� Linear Data Structures: If a data structure organizes the data in sequential order,
then that data structure is called a Linear Data Structure.

� Examples are:

� Arrays

� Linked List

� Stacks

� Queues

� Non - Linear Data Structures: If a data structure organizes the data in random order,
then that data structure is called as Non-Linear Data Structure.

� Examples are:

� Trees

� Graphs

� Dictionaries

� Heaps

7 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Description of linear and non linear data structures

� Arrays: An array is a collection of homogeneous data elements described

by a single name.

� Each element of an array is referenced by a subscripted variable or value,

called subscript or index enclosed in parenthesis.

� If an element of an array is referenced by single subscript, then the array is

known as one dimensional array or linear array and if two subscripts are

required to reference an element, the array is known as two dimensional

arrays and so on.

8 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/27/2022

5

Continue

� Linked List: A linked list is an ordered set consisting of a varying

number of elements to which insertion and deletion can be made.

� List can be implemented by using pointers.

� Each element is referred to as nodes; therefore a list can be defined as a

collection of nodes as shown below :

9 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue

� Stacks: It is an ordered collection of items into which new data items

may be added / inserted and from which items may be deleted at only

one end, called the top of the stack.

� As all the addition and deletion in a stack is done from the top of the

stack, the last added element will be first removed from the stack.

� That is why the stack is also called Last-in-First-out (LIFO).

10 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/27/2022

6

Continue

� Queues: A queue is logically a first in first out (FIFO or first come first

serve) linear data structure.

� It is a homogeneous collection of elements in which new elements are

added at one end called rear, and the existing elements are deleted from

other end called front. The basic operations that can be performed on

queue are:

� 1. Insert (or add) an element to the queue (push)

� 2. Delete (or remove) an element from a queue (pop).

11 Dr. Sunil Kumar, CSE Dept., MIET Meerut

� Trees: Many real life problems can be represented and solved using trees.

� Trees are very flexible, versatile and powerful non-liner data structure.

� A tree is an ideal data structure for representing hierarchical data.

� A tree can be theoretically defined as a finite set of one or more data items

(or nodes) such that:

� There is a special node called the root of the tree.

� Removing nodes (or data item) are partitioned into number of mutually

exclusive (i.e., disjoined) subsets each of which is itself a tree, are called

sub tree.

Continue

12 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/27/2022

7

Dr. Sunil Kumar, CSE Dept., MIET Meerut13

� Graphs: A Graph is a non-linear data structure consisting of nodes and
edges.

� The nodes are sometimes also referred to as vertices and the edges are lines
or arcs that connect any two nodes in the graph.

� More formally a Graph can be defined as,

“A Graph consists of a finite set of vertices(or nodes) and set
of Edges which connect a pair of nodes.”

Continue

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of

edges E = {01, 12, 23, 34, 04, 14, 13}.

8/27/2022

1

UNIT 1 - Part I: Introduction

Table of Contents

15

� Basic Terminology: Elementary Data
Organization

� Built-in Data Types in C

� Algorithm
� Efficiency of an Algorithm
� Time and Space Complexity

� Asymptotic Notations
� Big - Oh (O)
� Big - Omega (Ω)
� Big - Theta (Θ)

� Time-Space Trade-off

� Abstract Data Types (ADT)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/27/2022

2

Introduction to Data Structures

� Data Structure = Organised Data + Allowed Operations

“Data structure is a method of organizing a large

amount of data more efficiently so that any

operation on that data becomes easy.”

In other words, “Data structure is the logical or

mathematical model of a particular organization.”

16 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/29/2022

1

Selection of Data Structure

� There are many considerations to be taken into

account when choosing the best data structure for a

specific program

� Size of data

� Speed and manner data use

� Data dynamics, as change and edit

� Size of required storage

� Fetch time of any information from data structure

17 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Need of Data Structure

� Processor Speed: To handle very large amount of data, high
speed processing is required, but as the data is growing day by
day to the billions of files per entity, processor may fail to
deal with that much amount of data.

� Data Search: Consider an inventory size of 106 items in a
store, If our application needs to search for a particular item, it
needs to traverse 106 items every time, results in slowing
down the search process.

� Multiple Requests: If thousands of users are searching the
data simultaneously on a web server, then there are the
chances that a very large server can be failed during that
process.

18 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/29/2022

2

Characteristics of a Data Structure

� Correctness − Data Structure implementation should

implement its interface correctly.

� Time Complexity − Running time or execution time of

operations of data structure must be as small as possible.

� Space Complexity − Memory usage of a data structure

operation should be as little as possible.

19 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/29/2022

1

Basic Terminology: Elementary Data Organization

� Data − Data are values or set of values or collection of facts and figures.

� Data Item − Data item refers to single unit of values.

� Group Items − Data item that are divided into sub items are called as

Group Items.

� For example, a student’s name may be divided into three sub items – [first

name, middle name and last name] but the ID of a student would

normally be treated as a single item.

20 Dr. Sunil Kumar, CSE Dept., MIET Meerut

In the above example (ID, Age, Gender, First, Middle, Last, Street, Area)

are elementary data items, whereas (Name, Address) are group data items.

Basic Terminology: Elementary Data Organization…

Dr. Sunil Kumar, CSE Dept., MIET Meerut21

� Data Types − Data type is a classification identifying one of various
types of data i.e. int, float, character etc.

� Variable − A variable is a quantity whose value can change.

� Record − Collection of related data items.

� Entity − An entity is something that has certain attributes or properties
which may be assigned some values. Example:

� Entity Set − Collection of entities or set of similar entities.

� Field − Field is a single elementary unit of information representing an
attribute of an entity.

� File − File is a collection of records in a given entity set.

8/29/2022

2

Built-in Data Types in C

22

� Each variable in C language has an associated data

type.

� Each data type requires different amounts of memory

and has some specific operations which can be

performed over it.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Data Types Examples

23

� Examples of some very common data types used in C:
� Char: The most basic data type in C. It stores a single

character and requires a single byte of memory in almost all
compilers.

� Int: As the name suggests, an int variable is used to store an
integer.

� Float: It is used to store decimal numbers (numbers with
floating point value) with single precision.

� Double: It is used to store decimal numbers (numbers with
floating point value) with double precision.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/29/2022

3

Continue

24

� Different data types also have different ranges up to

which they can store numbers.

� These ranges may vary from compiler to compiler.

� List of ranges along with the memory requirement and

format specifiers on 32-bit gcc compiler has been shown

onto the next slide.

� sizeof () operator is used to check the size of a variable.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

25

DATA TYPE

MEMORY

(BYTES) RANGE

FORMAT

SPECIFIER

short int 2 -32,768 to 32,767 %hd

unsigned short int 2 0 to 65,535 %hu

unsigned int 4 0 to 4,294,967,295 %u

int 4

-2,147,483,648 to

2,147,483,647 %d

long int 4

-2,147,483,648 to

2,147,483,647 %ld

unsigned long int 4 0 to 4,294,967,295 %lu

long long int 8 -(2^63) to (2^63)-1 %lld

unsigned long long int 8

0 to

18,446,744,073,709,551,615 %llu

signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

Float 4 1.2E-38 to 3.4E+38 %f

Double 8 2.3E-308 to 1.7E+308 %lf

long double 12 3.4E-4932 to 1.1E+4932 %Lf
Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

1

Algorithm Definition

26

� An algorithm is a step by step procedure to solve a

problem.

� In normal language, the algorithm is defined as a

sequence of statements which are used to perform a

task.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Algorithm Definition…

27

� In computer science, an algorithm can be defined as

follows...

“An algorithm is a sequence of unambiguous

instructions used for solving a problem, which can be

implemented (as a program) on a computer.”

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

2

Characteristics of an Algorithm

28

� Input - Every algorithm must take zero or more number of
input values from external.

� Output - Every algorithm must produce an output as a
result.

� Definiteness - Every statement / instruction in an algorithm
must be clear and unambiguous (only one interpretation).

� Finiteness - For all different cases, the algorithm must
produce a result within a finite number of steps.

� Effectiveness - Every instruction must be basic enough to
be carried out and it also must be feasible.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example

29

� Let us consider the following problem for finding the largest
value in a given list of values.

� Problem Statement: Find the largest number in the given list
of numbers?

� Input: A list of positive integer numbers. (List must contain at
least one number).

� Output:The largest number in the given list of positive integer
numbers.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

3

Algorithm

30

� Step 1: Define a variable 'max' and initialize with '0'.

� Step 2: Compare first number (say 'x') in the list 'L'

with 'max', if 'x' is larger than 'max', set 'max' to 'x'.

� Step 3: Repeat step 2 for all numbers in the list 'L'.

� Step 4: Display the value of 'max' as a result.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Code using C Programming

31

� int findMax(L)

{

int max = 0,i;

for(i=0; i < listSize; i++)

{

if(L[i] > max)

max = L[i];

}

return max;

}

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

4

Efficiency of an Algorithm

32

� A measure of the average execution time necessary for

an algorithm to complete work on a set of data.

� Algorithm efficiency is characterized by its order.

� Typically a bubble sort algorithm will have efficiency in

sorting N items proportional to and of the order of N2,

usually written O(N2).

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Time and Space Complexity

33

� Time complexity is a function describing the amount

of time an algorithm takes in terms of the amount of

input to the algorithm.

� "Time" can mean the number of memory accesses

performed, the number of comparisons between

integers, the number of times some inner loop is

executed, or some other natural unit related to the

amount of real-time the algorithm will take.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

5

Time and Space Complexity...

34

� Space complexity is a function describing the amount of

memory (space) an algorithm takes in terms of the

amount of input to the algorithm.

� We often speak of "extra" memory needed, not

counting the memory needed to store the input itself.

� Space complexity is sometimes ignored because the

space used is minimal and/or obvious, but sometimes

it becomes as important an issue as time.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

1

Asymptotic Notations

35

� Whenever we want to perform an analysis of an algorithm, we need to
calculate the complexity of that algorithm.

� But when we calculate the complexity of an algorithm it does not
provide the exact amount of resource required.

� So instead of taking the exact amount of resource, we represent that
complexity in a general form (Notation) which produces the basic
nature of that algorithm.

“Asymptotic notation of an algorithm is a mathematical
representation of its complexity.”

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Asymptotic Notations...

36

� Majorly, we use three types of asymptotic notations:
� Big - Oh (O)

� Big - Omega (Ω)

� Big -Theta (Θ)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

2

Big - Oh Notation (O)

37

� Big - Oh notation is used to define the upper bound of an algorithm
in terms ofTime Complexity.

� That means Big - Oh notation always indicates the maximum time
required by an algorithm for all input values.

� That means Big - Oh notation describes the worst case of an
algorithm time complexity.

� Big - Oh Notation can be defined as follows:

“Consider function f(n) as time complexity of an
algorithm and g(n) is the most significant term. If

f(n) <= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then
we can represent f(n) as O(g(n)).”

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Big - Oh Notation (O)...

38

� Consider the following graph drawn for the values of f(n) and C g(n)
for input (n) value on X-Axis and time required is onY-Axis.

� In above graph after a particular input value n0, always C g(n) is
greater than f(n) which indicates the algorithm's upper bound.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

3

Example

39

� Consider the following f(n) and g(n).
f(n) = 3n + 2
g(n) = n

� If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C
g(n) for all values of C > 0 and n0>= 1
⇒ f(n) <= C g(n)
⇒3n + 2 <= C n

� Above condition is always TRUE for all values of C = 4 and n >= 2.

� By using Big - Oh notation, we can represent the time complexity as
follows...
f(n)= 3n + 2 = O(n)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Big - Omega Notation (Ω)

40

� Big - Omega notation is used to define the lower bound of an algorithm in
terms of Time Complexity.

� That means Big-Omega notation always indicates the minimum time
required by an algorithm for all input values.

� That means Big-Omega notation describes the best case of an algorithm
time complexity.

� Big - Omega Notation can be defined as follows:

“Consider function f(n) as time complexity of an
algorithm and g(n) is the most significant term. If f(n)
>= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we

can represent f(n) as Ω(g(n)). f(n) = Ω(g(n))”

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

4

Big - Omega Notation (Ω)...

41

� Consider the following graph drawn for the values of f(n) and C g(n)
for input (n) value on X-Axis and time required is onY-Axis

� In above graph after a particular input value n0, always C g(n) is less
than f(n) which indicates the algorithm's lower bound.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example

42

� Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n

� If we want to represent f(n) asΩ(g(n)) then it must satisfy f(n) >= C
g(n) for all values of C > 0 and n0>= 1
⇒ f(n) >= C g(n)
⇒3n + 2 >= C n

� Above condition is always TRUE for all values of C = 1 and n >= 1.

� By using Big-Omega notation we can represent the time complexity as
follows...
f(n)= 3n + 2 = Ω(n)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

5

Big - Theta Notation (Θ)

43

� Big -Theta notation is used to define the average bound of an
algorithm in terms of Time Complexity.

� That means Big -Theta notation always indicates the average time
required by an algorithm for all input values.

� That means Big -Theta notation describes the average case of an
algorithm time complexity.

� Big -Theta Notation can be defined as follows:

“Consider function f(n) as time complexity of an
algorithm and g(n) is the most significant term. If
C1 g(n) <= f(n) <= C2 g(n) for all n >= n0, C1 > 0,
C2 > 0 and n0 >= 1. Then we can represent f(n) as

Θ(g(n)). f(n) = Θ(g(n))”

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Big - Theta Notation (Θ)...

44

� Consider the following graph drawn for the values of f(n) and C g(n)
for input (n) value on X-Axis and time required is onY-Axis.

� In above graph after a particular input value n0, always C1 g(n) is less
than f(n) and C2 g(n) is greater than f(n) which indicates the
algorithm's average bound.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

6

Example

45

� Consider the following f(n) and g(n)...
f(n) = 3n + 2
g(n) = n

� If we want to represent f(n) asΘ(g(n)) then it must satisfy C1 g(n)
<= f(n) <= C2 g(n) for all values of C1 > 0, C2 > 0 and n0>= 1
⇒ C1 g(n) <= f(n) <= C2 g(n)
⇒C1 n <= 3n + 2 <= C2 n

� Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n
>= 2.

� By using Big -Theta notation we can represent the time complexity as
follows...
f(n) =3n + 2 = Θ(n)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Notation Intuition

O (Big-Oh) f(n) ≤ g(n)

Ω (Big-Omega) f(n) ≥ g(n)

Θ (Theta) f(n) = g(n)

Intuition about the notations

46 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

7

Common Asymptotic Notations

47

Constant O(1)

Logarithmic Ο(log n)

Linear Ο(n)

n log n Ο(n log n)

Quadratic Ο(n2)

Cubic Ο(n3)

Polynomial nΟ(1)

Exponential 2Ο(n)

Dr. Sunil Kumar, CSE Dept., MIET Meerut

Time-Space Trade-off

48

� The best algorithm to solve a given problem is one that requires less
space in memory and takes less time to complete its execution.

� But in practice, it is not always possible to achieve both these
objectives.

� As we know there may be more than one approach to solve a
particular problem.

� One approach may take more space but takes less time to complete its
execution while the other approach may take less space but takes more
time to complete its execution.

� We may have to sacrifice one at the cost of the other.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/30/2022

8

Time-Space Trade-off...

49

� If space is our constraint, then we have to choose a program that
requires less space at the cost of more execution time.

� On the other hand, if time is our constraint then we have to
choose a program that takes less time to complete its execution at
the cost of more space.

� That is what we can say that there exists a time-space trade-off
among algorithms.

Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/31/2022

1

Abstract Data Types (ADT)

51 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Abstract Data Types (ADT)...

52 Dr. Sunil Kumar, CSE Dept., MIET Meerut

8/31/2022

2

Abstract Data Types (ADT)...

Dr. Sunil Kumar, CSE Dept., MIET Meerut53

Abstract Data Types (ADT)...

Dr. Sunil Kumar, CSE Dept., MIET Meerut54

� Some more examples of ADT are Stack, Queue, List etc.
� Let us see some operations of those mentioned ADT −
� Stack −

� isFull(), This is used to check whether stack is full or not
� isEmpty(), This is used to check whether stack is empty or

not
� push(x), This is used to push x into the stack
� pop(), This is used to delete one element from top of the stack
� peek(), This is used to get the top most element of the stack
� size(), this function is used to get number of elements present

into the stack

8/31/2022

3

Abstract Data Types (ADT)...

Dr. Sunil Kumar, CSE Dept., MIET Meerut55

� Queue −
� isFull(), This is used to check whether queue is full or not

� isEmpty(), This is used to check whether queue is empty or not

� insert(x), This is used to add x into the queue at the rear end

� delete(), This is used to delete one element from the front end of
the queue

� size(), this function is used to get number of elements present
into the queue

Abstract Data Types (ADT)...

Dr. Sunil Kumar, CSE Dept., MIET Meerut56

� List −
� size(), this function is used to get number of elements present

into the list

� insert(x), this function is used to insert one element into the list

� remove(x), this function is used to remove given element from
the list

� get(i), this function is used to get element at position i

� replace(x, y), this function is used to replace x with y value

8/31/2022

4

Implementation of ADT

Dr. Sunil Kumar, CSE Dept., MIET Meerut57

� Implementation of an ADT means writing a
program in a programming language.

� Data structure deals with the implementation of
various ADTs.

9/2/2022

1

UNIT 1 - Part II: Arrays

Table of Contents

� Definition

� Single and Multidimensional Arrays

� Representation of 2D Arrays:

� Row Major Order

� Column Major Order

� Derivation of Index Formulae for 1-D,2-D,3-D and n-D
Array

� Application of Arrays

� Sparse Matrices and Their Representations

3 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

2

Arrays

� Definition:

� An array is a sequential collection of elements of same
data type and stores data elements in a continuous
memory location.

� The elements of an array are accessed by using an index.

� The index of an array of size N can range from 0 to N−1.

� The lowest address corresponds to the first element and
the highest address to the last element.

4 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue

� If array size is 5, then your index will range from 0 to 4 (5-1).

� Each element of an array can be accessed by using arr [index].

� Consider following array:

� The size of this array is 5.

� If you want to access 34, then you can access it by using

arr[2] i.e. 34.

arr 5 23 34 9 28

index 0 1 2 3 4

5 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

3

Array Declaration in C/C++

Declaring an array you must specify the following:

� Size of the array: This defines the number of elements that can
be stored in the array.

� Type of array: This defines the type of each element i.e.
number, character, or any other data type.

data type variable name size

Example: int arr[5];

6 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Array Initialization

� Array is initialized at the time of declaration.

The sample format if an array is initialized at the time
of declaration is:

Syntax: type arr[size]={elements}

Example: int arr[5]={4,12,7,15,9};

7 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

4

Single Dimensional Array

� A one-dimensional array is also called a single dimensional array where
the elements will be accessed in sequential order.

� This type of array will be accessed by the subscript of either a column
or row index.

Syntax: data-type Array-name[size]

Example: int x[10];

char name[20];

float f[5];

8 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Address Calculation in 1D Array

9 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

5

Continue
� Array of an element of an array say “A[I]” is calculated using

the following formula:

Address of A [I] = BA + W * (I – LB)

Where,
BA = Base address
W = Storage Size of one element stored in the array (in byte)
I = Subscript of element whose address is to be found
LB = Lower limit / Lower Bound of subscript, if not
specified assume 0 (zero)

10 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example
� Given the base address of an array B[1300…..1900] as 1020

and size of each element is 2 bytes in the memory. Find the
address of B[1700].

Solution:

The given values are: B = 1020, LB = 1300, W = 2, I = 1700

Address of A [I] = B + W * (I – LB)

= 1020 + 2 * (1700 – 1300)
= 1020 + 2 * 400
= 1020 + 800
= 1820

11 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

6

Multidimensional Arrays
� When the number of dimensions specified is more than one then it is

called as a multi-dimensional array.

Two-Dimensional Arrays:

Syntax: data-type Array-name[row size][column size]

� A two-dimensional array can be thought of a matrix with row and
columns. For example if we declare a 2-D array as: int arr[3][4]; then
this declaration means a 2-D arr of 3 rows and 4 column which can be
represented as follows:

12 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Row Major Order
� Row Major Order is a method of representing multi-dimension array

in sequential memory.

� In this method, elements of an array are arranged sequentially
row by row.

� Thus elements of first row occupies first set of memory locations
reserved for the array, elements of second row occupies the next set of
memory and so on.

� Consider a Two Dimensional Array consist of N rows and M columns.
It can be stored sequentially in memory row by row as shown below:

13 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

7

Column Major Order
� Column Major Order is a method of representing multi dimension array

in sequential memory.

� In this method elements of an array are arranged sequentially column by
column.

� Thus elements of first column occupies first set of memory locations
reserved for the array, elements of second column occupies the next set
of memory and so on.

� Consider a Two Dimensional Array consist of N rows and M columns. It
can be stored sequentially in memory column by column as shown
below:

14 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example

15 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

8

Row Major Order
• The Location of element A[i, j] can be obtained by evaluating

expression:
LOC (A [i, j]) = Base Address (BA) + W [N (i-1) + (j-1)]
Here,
Base Address is the address of first element in the array.
W is the word size. It means number of bytes occupied by each
element.
M is number of rows in array.

N is number of columns in array.

16 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Column Major Order

� The Location of element A[i, j] can be obtained by evaluating
expression:
LOC (A [i, j]) = Base Address (BA) + W [M (j-1) + (i-1)]
Here,

Base Address is the address of first element in the array.
W is the word size. It means number of bytes occupied by each
element.
M is number of rows in array.

N is number of columns in array.

17 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

1

Example
� Given an array [1…5,1…7] of integers. Calculate address of

element T[4,6] by using Row Major Order, where BA=900,
W=1.

Solution:
Location (A[i, j]) =BA+ W*[N x (i - 1) + (j - 1)]

i = 4 , j = 6, M= 5 , N= 7, W=1
Location (T [4,6]) = BA + [(7 x (4-1) + (6-1)]

= 900+ [(7 x 3) +5]
= 900+ 21 + 5
= 926

18 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue
� Given an array [1…6,1…8] of integers. Calculate address element

T[5,7] by using Column Major Order, where BA=300 and W=1.

Solution:

Location (A[i, j]) =Base Address + W*[M x (j - 1)) + (i - 1)]

i = 5 , j = 7, M= 6 , N= 8, W=1

Location (T [5,7]) = BA + [6 x (7-1)) + (5-1)]
= 300+ [(6 x 6) +4]
= 300+ 36+4
= 340

19 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

2

Continue
� Important : Usually number of rows and columns of a matrix are given (like A[20][30] or

A[40][60]) but if it is given as A[Lr- – – – – Ur, Lc- – – – – Uc]
{Example: X [-15……….10, 15……………40]} .

� In this case number of rows and columns are calculated by using the following methods:
� Number of rows (M) will be calculated as = (Ur – Lr) + 1
� Number of columns (N) will be calculated as = (Uc – Lc) + 1
� And rest of the process will remain same as per requirement (Row Major Wise or

Column MajorWise).

Ur = Upper limit of row/start row index of matrix, if not given assume 0 (zero)
Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero)
Uc = Upper limit of column/start column index of matrix, if not given assume 0

(zero)
Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero)

20 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue
Row Major System:

The address of a location in Row Major System is calculated by using the following formula:

Address of A [I][J] = B + W * [N * (I – Lr) + (J – Lc)]

Column Major System:

The address of a location in Column Major System is calculated by using the following formula:

Address of A [I][J] = B + W * [(I – Lr) + M * (J – Lc)]

Where,
B = Base address
I = Row subscript of element whose address is to be found
J = Column subscript of element whose address is to be found
W = Storage Size of one element stored in the array (in byte)
Lr = Lower limit of row/start row index of matrix, if not given assume 0 (zero)
Lc = Lower limit of column/start column index of matrix, if not given assume 0 (zero)
M = Number of row of the given matrix
N = Number of column of the given matrix

21 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

3

Example
An array X [-15……….10, 15……………40] requires one byte of
storage. If beginning location is 1500 determine the location of X [15][20].
Solution:
As you see here the number of rows and columns are not given in the question. So they are
calculated as:
Number or rows say M = (Ur – Lr) + 1 = [10 – (- 15)] +1 = 26
Number or columns say N = (Uc – Lc) + 1 = [40 – 15)] +1 = 26

(i) Column Major Order
The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, M = 26
Address of A[I][J] = B + W * [(I – Lr) + M * (J – Lc)]
= 1500 + 1 * [(15 – (-15)) + 26 * (20 – 15)]
= 1500 + 1 * [30 + 26 * 5]
= 1500 + 1 *[160]
= 1660 [Ans]

22 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue
(ii) Row Major Order

The given values are: B = 1500, W = 1 byte, I = 15, J = 20, Lr = -15, Lc = 15, N
= 26

Address of A[I][J] = B + W * [N * (I – Lr) + (J – Lc)]

= 1500 + 1* [26 * (15 – (-15))) + (20 – 15)]

= 1500 + 1 * [26 * 30 + 5]

= 1500 + 1 * [780 + 5]

= 1500 + 785
= 2285 [Ans]

23 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

4

� Example: Given an array, arr[1………10][1………15]
with base value 100 and the size of each element is 1 Byte in
memory. Find the address of arr[8][6] with the help of row-
major order?

� Solution:

Address of A[I][J] = B + W * [N * (I – Lr) + (J – Lc)]

Address of A[8][6] = 100 + 1 * ((8 – 1) * 15 + (6 – 1))
= 100 + 1 * ((7) * 15 + (5))
= 100 + 1 * (110)

Address of A[I][J] = 210

Example

24 Dr. Sunil Kumar, CSE Dept., MIET Meerut

� Example: Given an array arr[1………10][1………15] with base
value 100 and the size of each element is 1 Byte in memory find the
address of arr[8][6] with the help of column-major order.

� Solution:

Address of A[I][J] = B + W * [(I – Lr) + M * (J – Lc)]
Address of A[8][6] = 100 + 1 * ((6 – 1) * 10 + (8 – 1))

= 100 + 1 * ((5) * 10 + (7))
= 100 + 1 * (57)

Address of A[I][J] = 157

Example

25 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

5

Three Dimensional Array

26 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Three Dimensional Array

27 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

6

Continue
� In three - dimensional array also address is calculated through

two methods i.e; row-major order and column-major method.

� To calculate address of element X[i, j, k] using row-major order
:

Location (X[i, j, k])=BA + W*[MN (i-1) + N (j-1) + (k-1)]

� To calculate address of element X[i, j, k] using column-major
order:

Location (X[i, j, k])=BA + W*[MN (i-1) + (j-1) + M(k-1)]

28 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Example
� Given an array [1..8, 1..5, 1..7] of integers. Calculate address of element

A[5,3,6], by using rows and columns methods, if BA=900, W=1?
Solution:- The dimensions of A are :

M=8 , N=5, R=7, i=5, j=3, k=6, W=1

Rows - wise :
Location (A[i, j, k]) = BA + W*[MN(i-1) + N(j-1) + (k-1)]
Location(A[5,3,6])= 900 + 1*[8x5(5-1) + 5(3-1) + (6-1)

= 900 + 40 x 4 +5 x 2 + 5
= 900 + 160 +10 +5
= 1075

Columns - wise :
Location (A[i, j, k]) = BA + W*[MN(i-1) + (j-1) + M(k-1)]
Location (A[5,3,6]) = 900 + 1*[8x5(5-1) + (3-1) + 8(6-1)]

= 900 + 40 x 4 +2 + 40
= 900 + 160 +2 +40
= 1102

29 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/2/2022

7

Applications of Arrays

� Arrays are used to Store List of values

� Arrays are used to Perform Matrix Operations

� Arrays are used to implement Search Algorithms

� Arrays are used to implement Sorting Algorithms

� Arrays are used to implement Data structures

� Arrays are also used to implement CPU Scheduling Algorithms

30 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

1

Sparse Matrices
• In computer programming, a matrix can be defined with a 2-

dimensional array.

• Any array with 'm' columns and 'n' rows represent a m X n

matrix. There may be a situation in which a matrix contains

more number of ZERO values than NON-ZERO values.

• Such matrix is known as sparse matrix.

• Sparse matrix is a matrix which contains very few non-zero

elements.

31 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Sparse Matrices Representations
� A sparse matrix can be represented by using TWO

representations, those are as follows...

1.Triplet Representation (Array Representation)

2. Linked Representation

32 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

2

Triplet Representation

� In this representation, we consider only non-zero values
along with their row and column index values.

� In this representation, the 0th row stores the total number
of rows, total number of columns and the total number of
non-zero values in the sparse matrix.

33 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue

34 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

3

Linked List Representation

• In linked list representation, each node has four fields.

• These four fields are defined as:

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is

located

• Value: Value of the non zero element located at index –

(row, column)

• Next node: Address of the next node

35 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue

36 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

4

Operations on Arrays
� Traversing

� Inserting

� Deleting

� Sorting

� Searching

� Merging

37 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue
� Traversing – Traversing refers to accessing each record

exactly once so that certain items in the record may be
processed (this accessing & processing is called visiting a
record).

� Inserting – It refers to addition of new record in the given list
of items.

� Deleting – It refers to removal of a record from the given list
of items.

� Sorting – Arranging the records in some logical order
(Ascending/Descending etc.) is called Sorting.

� Searching – Finding the location of record with a given key
value or finding the locations of all records which satisfy one
or more conditions.

� Merging – It refers to combining two different sorted files
into a single sorted file.

38 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

5

Traversing Algorithm
� LA is a linear array with lower bound LB and upper

bound UB. This algorithm traverses LA applying an
operation PROCESS to each element of LA.

Step 1: [Initialize counter] Set K: = LB.

Step 2: Repeat Steps 3 and 4 while K<= UB

Step 3: [Visit element] Apply PROCESS to LA[K]

Step 4: [Increase counter] Set K:= K + 1

Step 5: Exit.

39 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue
� This algorithm traverses a Linear Array LA with lower bound LB

and upper bound UB.

Step 1: Repeat for K= LB to UB:

Apply PROCESS to LA[K]

Step 2: Exit.

40 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

1

Inserting Algorithm
� INSERT (LA, N, K, ITEM)

� Here LA is a linear array with N elements and K is a positive
integer such as K<=N. This algorithm inserts an element ITEM
into Kth position in LA.

Step 1: [Initialize counter] Set J: = N.

Step 2: Repeat Steps 3 and 4 while J>=K.

Step 3: Set LA[J+1]= LA [J]

Step 4: Set J=J-1

Step 5: Set LA[K]=ITEM

Step 6: Set N= N + 1

Step 7: Exit.

41 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Deleting Algorithm
� DELETE(LA, N, K, ITEM)

� Here LA is a linear array with N elements and K is a positive
integer such that K<=N. This algorithm deletes the Kth element
from LA.

Step 1: Set ITEM= LA[K]

Step 2: Apply PROCESS to LA[K]

Step 3: Repeat for J=K to N-1:

Set LA[J] = LA[J+1]

Step 4: Set N= N - 1

Step 5: Exit.

42 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/5/2022

2

Derivation of Index Formulae

1D

43 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/6/2022

1

Continue

2D

44 Dr. Sunil Kumar, CSE Dept., MIET Meerut

Continue

So Address of a[2][L2]=BA+L2+L2-1

So Address of a[3][1]=BA+L2+L2-1+1=BA+2*L2

So Address of a[i][1]=BA+(i-1)*L2

Address of a[i][2]=BA+(i-1)*L2+1

Address of a[i][3]=BA+(i-1)*L2+2

Address of a[i][j]=BA+(i-1)*L2+(j-1)

Address of a[i][j]=BA+W(E1*L2+E2)

� Where E1 and E2 are effective index of i and j and l1 and l2 are
length of row and column dimensions.(Ei=i-lower bound)

45 Dr. Sunil Kumar, CSE Dept., MIET Meerut

9/6/2022

1

UNIT 1 - Part III: Linked List

Table of Contents
� Definition

� Array and Pointer Implementation of:

� Singly Linked Lists

� Doubly Linked List

� Circularly Linked List

� Operations on a Linked List:

� Insertion

� Deletion

� Traversal

� Polynomial Representation:

� Addition Subtraction & Multiplication of Single Variable
& Two Variables Polynomial.

3

9/6/2022

2

Link List

� Linked List can be defined as collection of objects called

nodes that are randomly stored in the memory.

� A node contains two fields:

� Data stored at that particular address

� Pointer which contains the address of the next node.

4

9/8/2022

1

Need of Linked List
� What are the problems with Arrays?

�Size is fixed

�Array items are stored contiguously

�Insertion and deletion at particular position is complex

� Why Linked List?

�Size is not fixed

�Data can be stored at any place

�Insertion and deletion at particular position is simple and faster

5

Types of Linked List
� Singly Linked List

� Doubly Linked List

� Circularly Linked List

6

9/8/2022

2

Dynamic Memory Allocation
� Dynamic memory allocation

� Obtain and release memory during execution

� malloc

� Takes number of bytes to allocate

� Use sizeof to determine the size of an object

� Returns pointer of type void*

� A void* pointer may be assigned to any pointer

� If no memory available, returns NULL

� new = malloc(sizeof(struct node));

� free

� Deallocates memory allocated by malloc

� Takes a pointer as an argument

� free (new);
7

Singly Linked List
� A node in the singly linked list consist of two parts: data part

and link part.

� Data part of the node stores actual information that is to be

represented by the node while the link part of the node

stores the address of its immediate successor.

� Singly linked list can be traversed only in one direction.

8

9/8/2022

3

Continue

9

Singly linked list operations

Insertion:

� Insertion of a node at the beginning

� Insertion of a node at the ending

� Insertion of a node at any position in the list

Deletion:

� Deletion at beginning

� Deletion at the ending

� Deletion at any position

Display:

� Displaying/Traversing the elements of a list

10

9/8/2022

4

Singly Linked Lists

Node Structure

struct node

{

int data;

struct node *link;

}*new, *ptr, *header;

Creating a node

new = malloc (sizeof(struct node));

new -> data = 10;

new -> link = NULL;

data link

2000

10

new

2000

NULL

11

Inserting a node at the beginning

Create a node that is to be inserted

2500

data link

10

new
2500

NULL

Algorithm:

1.Create a new node.

2.if (header = = NULL)

3. header = new;

4.else

5.{

6. new -> link = header;

7. header = new;

8.}

If the list is empty

NULL
header header

If the list is not empty

1200
header

2500

10

new

2500

NULL 1200 1300 1400 1500

NULL5 7 4 81300 1330 1400

12

9/8/2022

5

Inserting a node at the ending

10 1800 20 1200 30 1400 40 NULL

1500 1800 1200 1400

1500

header

50 NULL

2000

Algorithm:

1. new=malloc(sizeof(struct node));

2. ptr = header;

3. while(ptr -> link!= NULL)

4. ptr = ptr -> link;

5. ptr -> link = new;

2000

new

1500

ptr

180012001400

2000

13

9/9/2022

1

Inserting a node at the given position

10 1800 20 1200 30 1400 40 NULL

1500

header

50 NULL

2000
2000

new Algorithm:

1. new=malloc(sizeof(struct node));

2. ptr = header;

3. for(i=1; i < pos-1; i++)

4. ptr = ptr -> link;

5. new -> link = ptr -> link;

6. ptr -> link = new;

1500

ptr

1500 1800 1200 1400

Insert position : 31800

1200

2000

14

Deleting a node at the beginning

Algorithm:

1. if (header = = NULL)

2. print “List is Empty”;

3. else

4. {

5. ptr = header;

6. header = header -> link;

7. free(ptr);

8. }

10 1800 20 30 1400 40 NULL

1500 1800 1200 1400

1200

1500

header

1500

ptr

1800

15

9/9/2022

2

Deleting a node at the end

10 1800 20 1200 30 1400 40 NULL

1500 1800 1200
1400

1500

header

Algorithm:

1. ptr = header;

2. while(ptr -> link != NULL)

3. ptr1=ptr;

4. ptr = ptr -> link;

5. ptr1 -> link = NULL;

6. free(ptr);

1500

ptr

18001200

NULL

ptr1 ptr1 ptr1

1400

16

Deleting a node at the given position

10 1800 20 1200 30 1400 40 NULL

1500

header

Algorithm:

1. ptr = header ;

2. for(i=1;i<pos-1;i++)

3. ptr = ptr -> link;

4. ptr1 = ptr -> link;

5. ptr -> link = ptr1-> link;

6. free(ptr1);

1500

ptr

1500 1800 1200
1400

Delete position : 31800

ptr1

1200

1400

17

9/12/2022

1

Traversing the elements of a list

10 1800 20 1200 30 1400 40 NULL

1500 1800 1200 1400

1500

header

Algorithm:

1. if(header = = NULL)

2. print “List is empty”;

3. else

4. for (ptr = header ; ptr->link != NULL ; ptr = ptr -> link)

5. print “ptr->data”;

ptr

1500

18

/*Program to implement singly linked list*/

#include<stdio.h> #include<malloc.h> #include<conio.h> #include<stdlib.h>

void traverse(); void deletion(); void insertion();

int choice, i, pos, item;

struct node {

int data;

struct node *link;

}*header,*ptr,*ptr1,*new;

void main() {

header=NULL;

ptr=header;

printf("****Menu****\n");

printf("\n 1.Insertion\n 2.Deletion\n 3.Traverse\n 4.Exit\n");

while(1) {

printf("\nEnter your choice");

scanf("%d",&choice);

switch(choice) {

case 1: insertion(); break;

case 2: deletion(); break;

case 3: traverse(); break;

case 4: exit();

default: printf("\nWrong choice\n");

}/*end of switch*/

}/*end of while*/

}/*end of main*/

19

9/12/2022

2

void insertion()

{

new=malloc(sizeof(struct node));

printf("\n Enter the item to be inserted\n");

scanf("%d",&item);

new->data=item;

if(header = = NULL)

{

new->link=NULL;

header=new;

}/*end of if*/

else

{

printf("\nEnter the place to insert the item\n");

printf("1.Start\n 2.Middle\n 3.End\n");

scanf("%d",&choice);

if(choice = = 1)

{

new->link=header;

header=new;

}20

if(choice = = 2)

{

ptr=header;

printf("Enter the position to place an item: ");

scanf("%d",&pos);

for(i=1;i<pos-1;i++)

ptr=ptr->link;

new->link=ptr->link;

ptr->link=new;

}

if(choice = = 3)

{

ptr=header;

while(ptr->link!=NULL)

ptr=ptr->link;

new->link=NULL;

ptr->link=new;

}

}/*end of else*/

}/*end of insertion*/
21

9/12/2022

3

void deletion()

{

ptr=header;

if(header = = NULL)

{

printf("\nThe list is empty");

}

else

{

printf("\n1.Start \n2.Middle \n3.End");

printf("\nEnter the place to delete the element from list");

scanf("%d",&choice);

if(choice = = 1)

{

printf("\nThe deleted item from the list is -> %d", ptr->data);

header=header->link;

}

22

if(choice = = 2)

{

printf("\nEnter the position to delete the element from the list");

scanf("%d",&pos);

for(i=0;i<pos-1;i++)

{

ptr1=ptr;

ptr=ptr->link;

}

printf("\nThe deleted element is ->%d", ptr->data);

ptr1->link=ptr->link;

}

if(choice = = 3)

{

while(ptr->link!=NULL){

ptr1=ptr;

ptr=ptr->link;

}//while

printf("\nThe deleted element from the list is ->%d", ptr->data);

ptr1->link=NULL;

}

}/*end of else*/

}/*end of deletion*/23

9/12/2022

4

void traverse()

{

if(header = = NULL)

printf("List is empty\n");

else

{

printf("\nThe elements in the list are");

for(ptr=header;ptr->link!=NULL;ptr=ptr->link)

printf("\n\tNode at %d is %d",++i,ptr->data);

}

}/*end of traverse*/

24

Doubly linked list
� Doubly linked list is a complex type of linked list in which a

node contains a pointer to the previous as well as the next node

in the sequence.

� Therefore, in a doubly linked list, a node consists of three

parts: node data, pointer to the next node in sequence (next

pointer), pointer to the previous node (previous pointer).

25

9/12/2022

5

� In a singly linked list one can move from the header node to any node in
one direction only (left-right).

� A doubly linked list is a two-way list because one can move in either
direction. That is, either from left to right or from right to left.

� It maintains two links or pointer. Hence it is called as doubly linked list.

� Where, DATA field - stores the element or data, PREV- contains the
address of its previous node, NEXT- contains the address of its next node.

PREV DATA NEXT

Structure of the node

Continue

26

Continue

27

9/12/2022

6

Doubly linked list operations

Insertion:

� Insertion of a node at the beginning

� Insertion of a node at the ending

� Insertion of a node at any position in the list

Deletion:

� Deletion at beginning

� Deletion at the ending

� Deletion at any position

Display:

� Displaying/Traversing the elements of a list

28

Algorithm:

1. Create a new node

2. Read the item

3. new->data=item

4. ptr= header

5. new->next=ptr;

6. ptr->prev=new;

7. new->prev=NULL;

8. header=new;

20 10001010 30 20002020 40 NULL100010 20202200

1010 2020 1000 2000

50 1010NULL

2200
new

header
2200

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

header

1010

ptr

1010
Before inserting a node at the beginning

After inserting a node at the beginning

50 NULLNULL

2200 new

29

9/12/2022

7

1. Create a new node

2. Read the item

3. new->data=item

4. ptr= header

5. while(ptr->next!=NULL)

5.1 ptr=ptr->next;

6. new->next=NULL;

7. new->prev=ptr;

8. ptr->next=new;

50 NULLNULL

2200 new

header

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010 ptr1010 ptr

new
20 10001010 30 20002020 40 2200100010 2020NULL

1010 2020 1000 2000

50 NULL2000

2200

new

ptr 2000

Before inserting a node at end of a list

After inserting a node

at end of a list

Algorithm:

30

header

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010 ptr1010 ptr

50 NULLNULL

2200 new

Before inserting a node at position: 3

header

20 22001010 30 20002200 40 NULL100010 2020NULL

1010 2020 1000 2000

1010

ptr2020 ptr

50 10002020

2200 new

ptr1000 ptr1

After inserting a node at position: 3

Algorithm:

1. create a node new

2. read item

3. new->data=item

4. ptr=header;

5. Read the position where the element is to be inserted

6. for(i=1;i<pos-1;i++)

6.1 ptr=ptr->next;

7.1 ptr1=ptr->next;

7.2 new->next=ptr1;

7.3 ptr1->prev=new;

7.4 new->prev=ptr;

7.5 ptr->next=new;

8. end

31

9/12/2022

1

Algorithm:

1.ptr=header

2.ptr1=ptr->next;

3.header=ptr1;

4.if(ptr1!=NULL)

4.1.ptr1->prev=NULL;

5. free(ptr);

header

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010

ptr1ptr

20 1000NULL 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

2020
1010

header

Before deleting a node at beginning

After deleting a node at beginning

32

header

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010

Algorithm:

1. ptr=header

2. while(ptr->next!=NULL)

2.1 ptr=ptr->next;

3. end while

4. ptr1=ptr->prev;

5. ptr1->next=NULL;

6. free (ptr);

Before deleting a node at end

ptrptr1header

20 10001010 30 NULL2020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010
20001000After deleting a node at end

33

9/12/2022

2

Deletion at any position

Algorithm:

1. ptr=header;

2. while(ptr->next!=NULL)

2.1 for(i=0;i<pos-1;i++)

2.1.1 ptr=ptr->next;

2.2 if(i = = pos-1)

2.2.1 break;

3. end while

4. if(ptr = = header)

//if the deleted item is first node

4.1 ptr1=ptr->next;

4.2 ptr1->prev=NULL;

4.3 header=ptr1;

4.4 end if

5.else

5.1 ptr1=ptr->prev;

5.2 ptr2=ptr->next;

5.3 ptr1->next=ptr2;

5.4 ptr2->prev=ptr1;

6. end else

7. end if

34

header

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

1010 ptr1010 ptr
Before deleting a node at position 3

After deleting a node at position 3

2000header

20 20001010 30 20002200 40 NULL202010 2020NULL

1010 2020 1000 2000

1010

ptr2020 ptr1 ptr1000 ptr2

5.else

5.1 ptr1=ptr->prev;

5.2 ptr2=ptr->next;

5.3 ptr1->next=ptr2;

5.4 ptr2->prev=ptr1;

35

9/13/2022

1

20 10001010 30 20002020 40 NULL100010 2020NULL

1010 2020 1000 2000

header

1010

ptr

1010

Forward Order : 10 20 30 40

Reverse Order : 40 30 20 10

Algorithm:
1. ptr=header;

2. if(header = = NULL)

2.1 printf("The list is empty\n");

3. else

3.1 print “The elements in forward order: “

3.2 while(ptr!=NULL)

3.2.1 print “ptr->data”;

3.2.2 if(ptr->next = = NULL)

3.2.2.1 break;

3.2.3 ptr=ptr->next;

3.3 print “The elements in reverse order: “

3.4. while(ptr!=header)

3.4.1 if(ptr->next = = NULL)

3.4.1.1 print “ptr->data”;

3.4.2 else

3.4.2.1 ptr=ptr->prev;

3.4.2.2 print “ptr->data”;

3.4.3 .end else

4. end else 36

Traversing the elements of a list

/*Program to implement operations of doubleylinked list*/

#include<stdio.h> #include<conio.h> #include<malloc.h>

void insertion(); void deletion(); void traverse(); int i,pos,item,choice;

struct node {

int data;

struct node *next;

struct node *prev;

}*new,*header,*ptr,*ptr1,*ptr2;

void main() {

header=NULL;

printf(" ***** MENU ****");

printf("\n1.Insertion \n2.Deletion \n3.Traverse \n4.Exit\n");

while(1) {

printf("\n\nEnter your choice: ");

scanf("%d",&choice);

switch(choice) {

case 1: insertion(); break;

case 2: deletion(); break;

case 3: traverse(); break;

case 4: exit(0);

default: printf("\nWrong choice");

}/* end of switch */

}/* end of while */

}/* end of main */
37

9/13/2022

2

void insertion() {

ptr=header;

new=malloc(sizeof(struct node));

printf("\nEnter the item to be inserted: ");

scanf("%d",&item);

new->data=item;

if(header==NULL) {

new->prev=NULL;

new->next=NULL;

header=new;

}

else {

printf("\nSelect the place:");

printf("\n1.Start \n2.Middle \n3.End\n");

scanf("%d",&choice);

if(choice==1) {

new->next=ptr;

ptr->prev=new;

new->prev=NULL;

header=new;

}/* choice1 */

38

if(choice==2)

{

printf("\nEnter the position to place the new element: ");

scanf("%d",&pos);

for(i=1;i<pos-1;i++)

ptr=ptr->next;

if(ptr->next==NULL)

{

new->next=NULL;

new->prev=ptr;

ptr->next=new;

}

else

{

ptr1=ptr->next;

new->next=ptr1;

ptr1->prev=new;

new->prev=ptr;

ptr->next=new;

}

}/* choice2 */

if(choice==3)

{

while(ptr->next!=NULL)

ptr=ptr->next;

new->next=NULL;

new->prev=ptr;

ptr->next=new;

}

}/* end of else */

}/* end of insertion */

39

9/13/2022

3

void deletion()

{

ptr=header;

if(header==NULL)

printf("The list is empty\n");

else

{

printf("\Select the place:");

printf("\n1.Start \n2.Middle \n3.End\n");

scanf("%d",&choice);

if(choice==1)

{

printf("\nThe deleted item is: %d",ptr->data);

ptr1=ptr->next;

header=ptr1;

if(ptr1!=NULL)

ptr1->prev=NULL;

}/* choice1 */

40

if(choice==2) {

printf("\nEnter the position to delete the element: ");

scanf("%d",&pos);

while(ptr->next!=NULL) {

for(i=0;i<pos-1;i++)

ptr=ptr->next;

if(i==pos-1)

break;

}//while

printf("\n\nThe deleted node is: %d",ptr->data);

if(ptr==header)//deleted item is starting node

{

ptr1=ptr->next;

ptr1->prev=NULL;

header=ptr1;

}//if

else {

ptr1=ptr->prev;

ptr2=ptr->next;

ptr1->next=ptr2;

ptr2->prev=ptr1;

}

}/* choice2 */

}/ * end of else */

if(choice==3)

{

while(ptr->next!=NULL)

ptr=ptr->next;

printf("\n\nThe deleted node is: %d",ptr->data);

ptr1=ptr->prev;

ptr1->next=NULL;

}/* choice3 */

}/*end of deletion */

41

9/13/2022

4

void traverse(){

ptr=header;

if(header==NULL)

printf("The list is empty\n");

else {

printf("\n\nThe elements in farword order: ");

while(ptr!=NULL) {

printf(" %d",ptr->data);

if(ptr->next==NULL) {

break;

}

ptr=ptr->next;

}/* end of while */

printf("\n\nThe elements in reverse order: ");

while(ptr!=header) {

if(ptr->next==NULL)

printf(" %d",ptr->data);

else

printf(" %d",ptr->data);

ptr=ptr->prev;

}/* end of while */

printf(" %d",ptr->data);
}/* end of else */

}/* end of traverse() */
42

Circular Singly Linked List
� In a circular Singly linked list, the last node of the list contains a pointer to

the first node of the list.

� Circular linked list are mostly used in task maintenance in operating

systems.

� We traverse a circular singly linked list until we reach the same node where

we started.

� The circular singly liked list has no beginning and no ending.

� Node creation is same as singly link list.

43

9/13/2022

5

Continue

44

Circular Singly linked list operations

Insertion:

� Insertion of a node at the beginning

� Insertion of a node at the ending

� Insertion of a node at any position in the list

Deletion:

� Deletion at beginning

� Deletion at the ending

� Deletion at any position

Display:

� Displaying/Traversing the elements of a list

45

9/13/2022

6

Circular Singly Linked Lists

Node Structure

struct node

{

int data;

struct node *link;

}*new, *ptr, *header;

Creating a node

new = malloc (sizeof(struct node));

new -> data = 10;

new -> link = new;

data link

2000

10

new

2000

2000

46

Inserting a node at the beginning

Create a node that is to be inserted

2500

data link

10

new
2500

2500

Algorithm:

1.Create a new node.

2. if (header = = NULL)

3. header = new;

4. new -> link = new;

5. while(ptr -> link!= header)

6. ptr = ptr -> link;

7. ptr -> link = new;

8.else

9.{

10. new -> link = header;

11. header = new;

12.}

If the list is empty

NULL
header header

If the list is not empty

1200
header

2500

10

new
2500

2500 1200 1300 1330 1400

12005 15 14 81300 1330 1400

47

2500

9/13/2022

7

Inserting a node at the ending

10 1800 20 1200 30 1400 40 1500

1500 1800 1200 1400

1500

header

50 2000

2000

Algorithm:

1. new=malloc(sizeof(struct node));

2. ptr = header;

3. while(ptr -> link!= header)

4. ptr = ptr -> link;

5. ptr -> link = new;

6. new->link = header;

2000

new

1500

ptr

180012001400

2000

48

Inserting a node at the given position

10 1800 20 1200 30 1400 40 1500

1500

header

50 2000

2000
2000

new

Algorithm:

1. new=malloc(sizeof(struct node));

2. ptr = header;

3. for(i=1; i < pos-1; i++)

4. ptr = ptr -> link;

5. new -> link = ptr -> link;

6. ptr -> link = new;

1500

ptr

1500 1800 1200 1400

Insert position: 31800

1200

2000

49

9/13/2022

1

Deleting a node at the beginning

Algorithm:
1. if (header = = NULL)

2. print “List is Empty”;

3. else

4. {

5. while (ptr->link!=header)

6. ptr= ptr->link;

7. ptr->link=header->link;

8. ptr = header;

9. header = header -> link;

10. free(ptr);

11. }

10 1800 20 30 1400 40 1500

1500 1800 1200 1400

1200

1500

header

1500

ptr

1800

50

Deleting a node at the end

10 1800 20 1200 30 1400 40 1500

1500 1800 1200
1400

1500

header

Algorithm:

1. ptr = header;

2. while(ptr -> link != header)

3. ptr1=ptr;

4. ptr = ptr -> link;

5. ptr1 -> link = header;

6. free(ptr);

1500

ptr

18001200

1500

ptr1 ptr1 ptr1

1400

51

9/13/2022

2

Deleting a node at the given position

10 1800 20 1200 30 1400 40 1500

1500

header

Algorithm:

1. ptr = header ;

2. for(i=1;i<pos-1;i++)

3. ptr = ptr -> link;

4. ptr1 = ptr -> link;

5. ptr -> link = ptr1-> link;

6. free(ptr1);

1500

ptr

1500 1800 1200
1400

Delete position : 31800

ptr1

1200

1400

52

Traversing the elements of a list

10 1800 20 1200 30 1400 40 1500

1500 1800 1200 1400

1500

header

Algorithm:

1. if(header = = NULL)

2. print “List is empty”;

3. else

4. for (ptr = header ; ptr->link != header ; ptr = ptr -> link)

5. print “ptr->data”;

ptr

1500

53

9/14/2022

1

Polynomial Representation

Algebraic Expression

� If we start with variables such as x, y, and z and some real

numbers, and combine them by using addition,

subtraction, multiplication, division, powers, and roots,

then we obtain an algebraic expression.

� Some examples are:

−− + +
+

2

2

2
2 3 4 10

4

y z
x x x

y

65

9/14/2022

2

Monomial, Binomial, & Trinomial

�A monomial is an expression of the form

axk—where a is a real number and k is

a nonnegative integer.

� A binomial is a sum of two monomials.

Example: 3x + 4

� A trinomial is a sum of three monomials.

Example: 3x2 +3y2 + 2

66

Polynomial

� In general, a sum of monomials is called a

polynomial.

� For example, the first expression listed below is a

polynomial, but the other two are not.

−− + +
+

2

2

2
2 3 4 10

4

y z
x x x

y

67

9/14/2022

3

Polynomial—Definition

� A polynomial in the variable x is an expression of

the form:

anxn + an–1x
n–1 + … + a1x + a0

where:

� a0, a1, . . . , an are real numbers.

� n is a nonnegative integer.

68

Degree

� Note that the degree of a polynomial is the highest power

of the variable that appears in the polynomial.

69

9/14/2022

4

Adding and Subtracting Polynomials

Combining Algebraic Expressions

� We add and subtract polynomials by using the

properties of real numbers.

71

9/14/2022

5

Adding Algebraic Expressions

� The idea is to combine like terms—terms with the same

variables raised to the same powers—using the

Distributive Property.

� For instance,

5x7 + 3x7 = (5 + 3)x7

= 8x7

72

Subtracting Polynomials

� In subtracting polynomials, we have to remember that:

� If a minus sign precedes an expression in parentheses, the

sign of every term within the parentheses is changed when

we remove the parentheses:

–(b + c) = –b – c

� This is simply a case of the Distributive Property, a(b + c) =

ab + ac, with a = –1.

73

9/14/2022

6

E.g. 1—Adding and Subtracting

Polynomials

(a) Find the sum

(x3 – 6x2 + 2x + 4) + (x3 + 5x2 – 7x).

(b) Find the difference

(x3 – 6x2 + 2x + 4) – (x3 + 5x2 – 7x).

74

E.g. 1—Adding Polynomials

� (x3 – 6x2 + 2x + 4) + (x3 + 5x2 – 7x)

= (x3 + x3) + (–6x2 + 5x2) + (2x – 7x) + 4

(Group like terms)

= 2x3 – x2 – 5x + 4 (Combine like terms)

Example (a)

75

9/14/2022

7

E.g. 1—Subtracting Polynomials

� (x3 – 6x2 + 2x + 4) – (x3 + 5x2 – 7x)

= x3 – 6x2 + 2x + 4 – x3 – 5x2 + 7x (Distributive property)

= (x3 – x3) + (–6x2 – 5x2) + (2x + 7x) + 4 (Group like terms)

= –11x2 + 9x + 4 (Combine like terms)

Example (b)

76

Multiplying Algebraic Expressions

9/14/2022

8

Multiplying Polynomials

� To find the product of polynomials or other algebraic

expressions, we need to use the Distributive

Property repeatedly.

78

Multiplying Polynomials

� In particular, using it three times on the product of two

binomials, we get:

(a + b)(c + d) = a(c + d) + b(c + d)

= ac + ad + bc + bd

� This says that we multiply the two factors by

multiplying each term in one factor by each term in

the other factor and adding these products.

79

9/14/2022

9

FOIL

� Schematically, we have:

(a + b)(c + d) = ac + ad + bc + bd
↑ ↑ ↑ ↑

F O I L

� The acronym FOIL helps us to remember that the product of two
binomials is the sum of the products of the first terms, the
outer terms, the inner terms, and the last terms.

80

Multiplying Polynomials

� In general, we can multiply two algebraic expressions

by using:

� The Distributive Property.

� The Laws of Exponents.

81

9/14/2022

10

E.g. 2—Multiplying Binomials Using

FOIL

(2x + 1)(3x – 5)

= 6x2 – 10x + 3x – 5 (Distributive Property)

= 6x2 – 7x – 5 (Combine like terms)

82

Multiplying Trinomials and Polynomials

� When we multiply trinomials and other polynomials

with more terms:

� We use the Distributive Property.

� The next example illustrates both methods.

83

9/14/2022

11

E.g. 3—Multiplying Polynomials

Using the Distributive Property

(2x + 3)(x2 – 5x + 4)

= 2x(x2 – 5x + 4) + 3(x2 – 5x + 4)

(Distributive Property)

= (2x3 – 10x2 + 8x) + (3x2 – 15x + 12)

(Distributive Property)

= 2x3 – 7x2 – 7x + 12 (Combine like terms)

Solution 1

84

E.g. 3—Multiplying Polynomials

Using Table Form

x2 – 5x + 4 (First factor)

2x + 3 (Second factor)

3x2 – 15x + 12 (Multiply first factor by 3)

2x3 – 10x2 + 8x (Multiply first factor by 2x)

2x3 – 7x2 – 7x + 12 (Add like terms)

Solution 2

85

9/14/2022

12

Special Product Formulas

Special Product Formulas

� Certain types of products occur so frequently that

you should memorize them.

� You can verify the following formulas by performing the

multiplications.

87

9/14/2022

13

Principle of Substitution

� The key idea in using these formulas

(or any other formula in algebra) is

the Principle of Substitution:

� We may substitute any algebraic expression for any letter
in a formula.

88

Principle of Substitution

� For example, to find (x2 + y3)2, we use Product Formula

2—substituting x2 for A and y3 for B—to get:

(x2 + y3)2 = (x2)2 + 2(x2)(y3) + (y3)2

= x4 + 2x2y3 + y6

89

9/14/2022

14

E.g. 4—Using the Special Product

Formulas

Use the Special Product Formulas to find:

(a) (3x + 5)2

(b) (x2 – 2)3

90

E.g. 4—Special Product Formulas

Substituting A = 3x and B = 5 in Product

Formula 2, we get:

(3x + 5)2 = (3x)2 + 2(3x)(5) + 52

= 9x2 + 30x + 25

Example (a)

91

9/14/2022

15

E.g. 4—Special Product Formulas

� Substituting A = x2 and B = 2 in Product Formula 5, we get:

(x2 – 2)3 = (x2)3 – 3(x2)2(2)+ 3(x)2(2)2 – 23

= x6 – 6x4 + 12x2 – 8

Example (b)

92

E.g. 5—Using the Special Product

Formulas

� Use the Special Product Formulas to find:

(a) (2x –)(2x +)

(b) (x + y – 1) (x + y + 1)

y y

93

9/14/2022

16

E.g. 5—Special Product Formulas

� Substituting A = 2x and B = in Product
Formula 1, we get:

(2x –)(2x +) = (2x)2 – ()2

= 4x2 – y

Example (a)

y

y y y

94

E.g. 5—Special Product Formulas

If we group x + y together and think of this as one algebraic

expression, we can use Product Formula 1 with A = x + y

and B = 1.

(x + y – 1) (x + y + 1) = [(x + y) – 1][(x + y) + 1]

=(x + y)2 – 12

=x2 + 2xy + y2 – 1

Example (b)

95

9/14/2022

17

Polynomials in Several Variables

�A polynomial in two variables, x and y, contains the sum

of one or more monomials in the form axnym.

� The constant, a, is the coefficient.

� The exponents, n and m, represent whole numbers.

� The degree of the monomial axnym is n + m.

� The degree of a polynomial in two variables is the

highest degree of all its terms.

96

Example: Adding Polynomials in Two

Variables

Addition:

97

9/14/2022

18

Example: Subtracting Polynomials in

Two Variables

�Subtract: 3 2 2 3 3 2 3
(4 5) (6)x x y xy y x x y y− + − − − +

3 2 2 3 3 2 3
(4 5) (6)x x y xy y x x y y− + − − − +

3 2 2 3 3 2 3
(4 5) (6)x x y xy y x x y y= − + − + − + −

3 3 2 2 2 3 3
() (4 6) 5 ()x x x y x y xy y y= − + − + + + − −

2 2 3
2 5 2x y xy y= + −

98

Example: Multiplying Polynomials in

Two Variables

Multiply:

Each of the factors is a binomial, so we can apply the FOIL
method for this multiplication.

F

O

I

L

(7 6)(3)x y x y− −

7 3⋅x x
2

21x=
7 ⋅ −x y 7xy= −
6 3− ⋅y x 18xy= −
6− ⋅ −y y 2

6y=

(7 6)(3)x y x y− − 2 2
21 7 18 6x xy xy y= − − +

2 2
21 25 6x xy y= − +

99

9/14/2022

19

• Polynomial (continued)

• How to implement this?

• There are different ways of implementing the
polynomial:

• Array (not recommended)

• Linked List (preferred and recommended)

100

• Polynomial (continued)

•Array Implementation:

• p1(x) = 8x3 + 3x2 + 2x + 6

• p2(x) = 23x4 + 18x - 3

6 2 3 8

0 2

Index
represents
exponents

-3 18 0 0 23

0 42

p1(x) p2(x)

101

9/14/2022

20

• This is why arrays aren’t good to represent
polynomials:

• p3(x) = 16x21 - 3x5 + 2x + 6

• Polynomial (continued)

6 2 0 0 -3 0 0 16…………

WASTE OF SPACE!

102

• Polynomial (continued)

• Advantages of using an Array:

• only good for non-sparse polynomials.

• ease of storage and retrieval.

• Disadvantages of using an Array:

• have to allocate array size ahead of time.

• huge array size required for sparse

polynomials.

• Waste of space and runtime.

103

9/14/2022

21

• Polynomial (continued)

• Linked list Implementation:

• p1(x) = 23x9 + 18x7 + 41x6 + 163x4 + 3

• p2(x) = 4x6 + 10x4 + 12x + 8

23 9 18 7 41 6 18 7 3 0

4 6 10 4 12 1 8 0

P1

P2

NODE (contains coefficient & exponent)

TAIL (contains pointer)

104

• Polynomial (continued)

• Advantages of using a Linked list:
• save space (don’t have to worry about sparse

polynomials) and easy to maintain

• don’t need to allocate list size and can declare

nodes (terms) only as needed

• Disadvantages of using a Linked list :
• can’t go backwards through the list

• can’t jump to the beginning of the list from the end.

105

9/19/2022

1

Polynomials

A (x) = anxn + an–1
xn–1 + … + a

1
x1 + a

0
x0

Representation

struct polynode
{

int coef;
int exp;
struct polynode * next;

};

coef exp next

106

Addition of two polynomials

107

� Let there be two polynomials which we are required to add
together:

5x 6 +6x 4 +2x 3

8x 6 +3x 2 +4x+5

9/19/2022

2

Addition of two polynomials

108

� if(ptr1->expo == ptr2->expo)
//Add the coefficients and insert the newly created node in the
resultant linked list and make ptr1 and ptr2 point to the next
nodes.

� if (ptr1->expo > ptr2->expo)
//Insert the node pointed by ptr1 in the resultant linked list and
make ptr1 point to the next node.

� if (ptr1->expo < ptr2->expo)
//Insert the node pointed by ptr2 in the resultant linked list and
make ptr2 point to the next node.

Addition of two polynomials

109

9/19/2022

3

Multiplication of two polynomials

110

� Consider the following polynomials:

4x^3 + 3x^2 + 1

5x^3 + 7x + 5
� Our target here is to multiply both the polynomials with

each other, i.e., each term of the polynomial 1 must be
multiplied with each term of the polynomials 2.

Multiplication of two polynomials

111

� Thus the resultant polynomials so obtained must look like:

� As it can be noticed, each term gets multiplied with every
other term, where the coefficients get multiplied and
the exponents get added together.

� The simplified final solution OR the resultant polynomial
is=

9/19/2022

4

Multiplication of two polynomials

112

� The representation of the polynomial equations in the form
of linked lists:

Multiplication of two polynomials

113

� Process to multiply these polynomials:
� Here, we have two pointers head1 and head2 pointing to the

first node of their respective linked lists which are representing
the polynomials expressions.

� The next task is to traverse both the lists and simply multiply
the terms. For traversal, we need two pointers ptr1 and ptr2.
We cannot use head1 or head2 for the same purpose as then we
would lose the reference of both the linked lists in the process.

9/19/2022

5

Multiplication of two polynomials

114

� Here, we also need a nested loop as each term of the first
polynomial must be multiplied with every term of the second
polynomial.

� Consider below:

while(ptr1 != NULL)

{

while(ptr2 != NULL)

{

...

}

}

Multiplication of two polynomials

115

{

res1 = ptr1->coeff * ptr2->coeff;

res2 = ptr1->expo + ptr2->expo;

head3 =insert(head3, res1, res2);

ptr2 = ptr2->link;

}

ptr1 = ptr1->link;

}

� res1 holds the value for the product of the coefficients.

� res2 holds the value for the addition of the exponents.

